
Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
28 OCT 2014 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Bayesian Missile System Reliability from Point Estimates 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Benny N. Cheng Lap Sam Tam 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Surface Warfare Center, Corona Division 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
This paper applies the Maximum Entropy Principle (MEP) to convert point estimates to probability
distributions to be used as priors for Bayesian reliability analysis of missile data, and illustrate this
approach by applying the priors to a Bayesian reliability model of a missile system. 

15. SUBJECT TERMS 
priors, Bayesian, missile reliability, maximum entropy 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

SAR 

18. NUMBER
OF PAGES 

13 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Page 1 

Bayesian Missile System Reliability from Point Estimates 

Benny N. Cheng1 
Naval Surface Warfare Center, Corona Division 

Lap Sam Tam1 
Computer Sciences Corporation 

 

Introduction 

Bayesian estimation of missile system reliability requires a prior distribution to be 

specified for a parameter of interest, such as the system failure rate or the system 

reliability for example. However, many current parameter estimates available to 

the missile community are in the form of point estimates or design values without 

uncertainty assessments such as the MIL-HDBK-217 reliability predictions (MIL-

HDBK-217FN2, February 1995). This lack of error bounds makes it problematic to 

utilize the point estimates as priors for Bayesian reliability assessment. In this 

paper, we propose using the Maximum Entropy Principle (MEP) to convert point 

estimates or design values, as obtained pro forma from external sources, to prior 

probability distributions convenient for Bayesian analysis. This approach utilizes 

the physical concept of entropy to search for the appropriate distribution that 

maximizes this entropy, which characterizes the most uncertain prior distribution 

with the available point estimates as constraints (e.g. Bayesian Inference and 

Maximum Entropy Methods in Science and Engineering, July 2007).  We illustrate 

the utility of the above priors by applying them to a Bayesian reliability model of a 

missile system. 

Maximum Entropy Density 

The entropy2 (aka relative entropy, Kullback-Leibler divergence), of a continuous  

 

                                                           
1
 The views expressed in this paper are those of the authors and do not reflect the official policy or position of the 

US Navy, Department of Defense or the US Government. 
2
 This is not the only entropy formulation in use.  For example, the Shannon entropy − ∫ 𝜌(𝜃) ln 𝜌(𝜃) 𝑑𝜃 is also 

another choice, but we have found this formulation to be most appropriate for our analysis. 



Page 2 
 

probability density function 𝜌(𝜃) is defined by the physicist E.T. Jaynes as (Berger, 

2010) 

ℰ(𝜌) = −𝐸𝜌 (ln
𝜌(𝜃)

𝜌0(𝜃)
) = − ∫ 𝜌(𝜃) ln

𝜌(𝜃)

𝜌0(𝜃)
𝑑𝜃  , 

where 𝜌0(𝜃) is the natural invariant uninformative density  in the Bayesian sense 

for the  class of distribution under consideration. Missile pass/fail data are 

assumed to belong to the class of Bernoulli distributions 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝜃)  (where 

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝜃) denotes the binomial distribution with sample size 𝑛 and 

probability 𝜃) with 𝜃 as the reliability parameter. For this class of distribution, the 

natural parameterization invariant uninformative prior 𝜌0 is given by the Jeffreys’ 

prior  

𝜌0(𝜃) =  
1

𝜋√𝜃(1 − 𝜃)
  . 

Without any additional constraints, we note that 𝜌0 is the pdf that maximizes the 

entropy. Suppose in addition, we have some information about the moments of  

𝜌 (such as the mean, variance, quantiles, etc.), it is desired to look for a pdf that 

maximizes the entropy subject to these constraints. In other words, we are 

looking for the most uncertain pdf that is consistent with the given prior 

information. Using variational calculus, this density can be written as (Berger, 

2010) 

                                     𝜌̃(𝜃) =
𝜌0(𝜃) 𝑒∑ 𝑔𝑖(𝜃)𝜔𝑖𝑖

∫ 𝜌0(𝜃) 𝑒∑ 𝑔𝑖(𝜃)𝜔𝑖𝑖 𝑑𝜃
 ,                                    (1) 

where  the  parameters 𝜔𝑖 are determined by the known information 

𝐸𝜌̃(𝑔𝑖(𝜃)) =  𝜇𝑖 ,    𝑖 = 1 … 𝑛, 

and 𝑔𝑖(𝜃) are predetermined functions of the parameter 𝜃. To illustrate, let us 

suppose that only the mean is known (i.e., mean reliability 𝜇). Then we have a 

single constraint 𝑔1(𝜃) = 𝜃, and  

𝐸𝜌̃(𝜃) =  𝜇 .  
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Claim: The maximum entropy probability density with mean  𝜇  is given by 

𝜌̃(𝜃) =
𝑒

(−
𝜔
2

+𝜔𝜃)

𝛪0 (
𝜔
2) 𝜋√𝜃(1 − 𝜃)

  , 

where 𝛪𝑛(𝑥)  is the  modified Bessel function of the first kind of order n.  

To prove this, we only need to show that  

∫ 𝜌0(𝜃) 𝑒𝜔𝜃

1

0

𝑑𝜃 = 𝑒
𝜔
2  𝛪0 (

𝜔

2
) . 

From (Abramowitz & Stegun, 1972, 13.2.1), the following fact holds 

∫ 𝜌0(𝜃) 𝑒𝜔𝜃

1

0

𝑑𝜃 =  𝑀 (
1

2
, 1, 𝜔) , 

where M(a,b,z) is the Kummer’s function (Abramowitz & Stegun, 1972, 13.1.2). 

Finally, from (Abramowitz & Stegun, 1972, 13.6.3) 

𝑀 (
1

2
, 1, 𝜔) = 𝑒

𝜔
2  𝛪0 (

𝜔

2
) . 

QED. 

As mentioned before in (1), the parameter 𝜔  is determined by solving the 

equation 

∫ 𝜃𝜌̃(𝜃)

1

0

𝑑𝜃 =  𝜇 . 

In fact, this is the same as solving the equation 

                                             (1 +
𝐼1 (

𝜔
2)

𝐼0 (
𝜔
2)

) = 2𝜇 ,                                        (2) 
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which can be done using numerical techniques such as Newton’s method. Above 

formula follows immediately from the fact that  𝐼0
′(𝑥) = 𝐼1(𝑥)  (Abramowitz & 

Stegun, 1972, 9.6.27) and  

∫ 𝜃𝜌0(𝜃) 𝑒𝜔𝜃

1

0

𝑑𝜃 =
𝑑

𝑑𝜔
∫ 𝜌0(𝜃) 𝑒𝜔𝜃

1

0

𝑑𝜃 =
𝑑

𝑑𝜔
(𝑒

𝜔
2  𝛪0 (

ω

2
) )  

=
𝑒

𝜔
2

2
( 𝛪0 (

𝜔

2
) + 𝐼1 (

𝜔

2
))  . 

Example.  Suppose a missile point reliability estimate has the value .92.  Then 

equation (2)  gives 𝜔 = 6.96.  

Some representative max entropy pdf’s are plotted below. 

 

Figure 1. Examples of maximum entropy priors with different values of 𝜔. 
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Missile System Reliability Model 

Missile system test data are usually provided as (𝑥1, 𝑡1), (𝑥2, 𝑡2), … , (𝑥𝑚, 𝑡𝑚), 

where each 𝑥𝑖  is Bernoulli random variables with values 0 (fail) and 1 (success) 

and 𝑡𝑖 is the time that the data are collected.  Our goal is to estimate the 

reliability 𝜃 using this data set.  Recall that reliability can be dependent on other 

factors (e.g., time) and the method used to specify such dependence is to 

construct a reliability regression model (Hamada, Wilson, Reese, & Martz, 2010). 

For simplicity’s sake, we will only consider time as the dependent variable and 

construct an intercept-exponential model for reliability,  

𝑅(𝑡) = 𝜃(𝑡) = 𝑒𝑎0+𝑎1𝑡 , 

where  𝑎0 and 𝑎1 are the unknown parameters to be estimated  (the notations 𝑅 

and 𝜃 are interchangeable). For this to be a valid reliability model, there is an 

implicit assumption that  𝑎0 + 𝑎1𝑡 ≤ 0  at all times, so that  𝑅(𝑡) ≤ 1. This 

condition is satisfied whenever 𝑎0 (the intercept, which provides an initial 

reliability estimate 𝑒𝑎0 at  𝑡 = 0 ) and 𝑎1 (the rate of failure) are both less than or 

equal to 0. The computed likelihood function becomes 

𝐿(data| 𝑎0, 𝑎1) =  ∏ 𝑅(𝑡𝑖)𝑥𝑖(1 − 𝑅(𝑡𝑖))
1−𝑥𝑖

𝑚

𝑖=1

.  

Note that missile pass/fail data are usually left and right censored data, since a 

failed test usually indicate the failure occurred sometime in the past, while a 

successful test means the system is still good for some time after the test.  

Therefore, this is the appropriate form of the likelihood equation given censored 

data (National Institute of Standards, 2013). We now describe some approaches 

on how the max entropy distributions can be used as priors for the parameters 𝑎0 

and 𝑎1. We identify two main methods for Bayesian reliability estimation, the 

independent endpoints method and the independent decrement methods (e.g. 

Lawrence & Van der Wiel, 2006). 
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Independent Endpoints Method 

In many cases dealing with missile reliability, we are provided with the point 

estimate of reliability at certain time points only. Suppose we know the system 

reliabilities 𝑅1
̅̅ ̅ and 𝑅2

̅̅ ̅  at two different times  𝑇1 and 𝑇2 respectively. In this case, 

we can use the above results to specify a max entropy distribution as prior with 

reliability 𝑅1  at time 𝑇1  having mean 𝑅1
̅̅ ̅ , and another max entropy prior with 

reliability  𝑅2 at time 𝑇2 having mean  𝑅2
̅̅ ̅ . The independent endpoints method 

allows one to obtain the priors for 𝑎0 and 𝑎1 under the assumption that the joint 

density is the product of the two priors, i.e. 

𝝅(𝑅1, 𝑅2) = 𝐶 𝜌̃(𝑅1)𝜌̃(𝑅2)

= 𝐶𝑒𝜔1𝑅1𝑅1
−1/2(1 − 𝑅1)−1/2𝑒𝜔2𝑅2𝑅2

−1/2(1 − 𝑅2)−1/2, 

where 𝐶 is some normalizing constant. Since 𝑅1 = 𝑒𝑎0+𝑎1𝑇1   and 𝑅2 = 𝑒𝑎0+𝑎1𝑇2, 

by a standard change of variables, we derived the prior joint density of (𝑎0, 𝑎1)  

as 

  𝝅(𝑎0, 𝑎1) = 𝐶
𝑒(𝜔1𝑒𝑎0+𝑎1𝑇1+𝜔2𝑒𝑎0+𝑎1𝑇2)𝑒

(𝑎0+
𝑎1(𝑇2+𝑇1)

2
)
|𝑇1 − 𝑇2|

√1 − 𝑒𝑎0+𝑎1𝑇1√1 − 𝑒𝑎0+𝑎1𝑇2
 ,   (3) 

and the posterior density is  

𝜌(𝑎0, 𝑎1|data) ∝ 𝝅(𝑎0, 𝑎1)𝐿(data| 𝑎0, 𝑎1). 

Bayesian mean estimates and confidence limit (credible intervals) calculations for 

the reliability model can now be computed from the above posterior distribution, 

i.e. 

𝑅(𝑡)̅̅ ̅̅ ̅̅ = E(𝑅(𝑡)) =  ∫ ∫ 𝑒𝑎0+𝑎1𝑡 

0

−∞

0

−∞

𝜌(𝑎0, 𝑎1|data) 𝑑𝑎0𝑑𝑎1 . 

While these numerical integrations can be complicated, these calculations are 

now handled routinely using the Markov Chain Monte Carlo (MCMC) procedure, 

available for example on popular statistical packages such as SAS. The following 

figure illustrates the calculated system reliability with the above concepts. 
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Figure 2. Missile system reliability from the independent endpoints method. 

Shown are the mean reliability curve (solid) and the 95% two-sided credible limits 

(dash). 

 

Independent Decrements Method 

Another method that has seen some application is the independent decrement 

method. Instead of having reliability priors specified at two different times as 

above, we have the following scenario, a point estimate 𝑅1
̅̅ ̅  of the reliability is 

known at an initial time 𝑇1, and a point estimate of reliability decrement ∆̅(𝑇2, 𝑇1) 

is also known at a later time 𝑇2, so that  𝑅(𝑇2)̅̅ ̅̅ ̅̅ ̅̅ = 𝑅(𝑇1)̅̅ ̅̅ ̅̅ ̅∆̅.  As in the independent 

endpoints method, we specify a max entropy distribution as prior with 𝑅1 at time 
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𝑇1 having mean 𝑅1
̅̅ ̅   and specify another max entropy prior for the reliability 

decrement (which we assume to be expressible in the same model form) with 

∆ = ∆(𝑇2, 𝑇1) having mean ∆̅. Under the assumption that the decrement is 

independent of the initial reliability, the joint density is given by 

𝝅(𝑅1, ∆) = 𝐶𝜌̃(𝑅1)𝜌̃(∆) = 𝐶𝑒𝜔1𝑅1𝑅1
−1/2(1 − 𝑅1)−1/2𝑒𝜔2ΔΔ−1/2(1 − Δ)−1/2. 

As before, a standard change of variables with 𝑅1 = 𝑒𝑎0+𝑎1𝑇1   and ∆= 𝑒𝑎1(𝑇2−𝑇1) 

gives the joint density of (𝑎0, 𝑎1)  as 

  𝝅(𝑎0, 𝑎1)    = 𝐶
𝑒(𝜔1𝑒𝑎0+𝑎1𝑇1+𝜔2𝑒𝑎1(𝑇2−𝑇1))𝑒

(
𝑎0
2

+
𝑎1(𝑇2−𝑇1)

2
)
|𝑇1 − 𝑇2|

√1 − 𝑒𝑎0+𝑎1𝑇1√1 − 𝑒𝑎1(𝑇2−𝑇1)
,    (4) 

and the posterior density is  

𝜌(𝑎0, 𝑎1|data) ∝   𝝅(𝑎0, 𝑎1)𝐿(data| 𝑎0, 𝑎1). 

As before, Bayesian mean estimates can be computed from the above posterior 

distribution, i.e. 

𝑅(𝑡)̅̅ ̅̅ ̅̅ = E(𝑅(𝑡)) =  ∫ ∫ 𝑒𝑎0+𝑎1𝑡 

0

−∞

0

−∞

𝜌(𝑎0, 𝑎1|data) 𝑑𝑎0𝑑𝑎1 . 

 

Failure rate as point estimate 

A special application of the above methods worth mentioning is the use of MIL-

HDBK-217 point estimates for reliability predictions. These estimates are not 

reliability values in itself, but rather point estimates of failure rates. We now 

demonstrate how to apply the above methods to obtain the maximum entropy 

priors for this case. 

Suppose we are given a reliability point estimate 𝑅0
̅̅ ̅ at  𝑡 = 0 , and the failure rate 

𝜆 as a point estimate similar to what is provided in MIL-HDBK-217 data. We can 

write 
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𝑅(𝑡) = 𝑒𝑎0+𝑎1𝑡 = 𝑅0𝑒𝑎1𝑡 . 

Applying the independent endpoints method to this case, we deduce that the 

maximum entropy prior is given by 

𝝅(𝑅0, 𝑎1) = 𝐶(𝑡) 𝜌̃(𝑅0)𝜌̃(𝑅0𝑒𝑎1𝑡)𝑡𝑅0𝑒𝑎1𝑡 

= 𝐶(𝑡)𝑒𝜔0𝑅0𝑅0
−

1
2(1 − 𝑅0)−

1
2𝑒𝜔1𝑅0𝑒𝑎1𝑡

(𝑅0𝑒𝑎1𝑡)−
1
2(1 − 𝑅0𝑒𝑎1𝑡)−

1
2𝑡𝑅0𝑒𝑎1𝑡 

= 𝐶(𝑡)
𝑒(𝜔0𝑅0+𝜔1𝑅0𝑒𝑎1𝑡)𝑡

√1 − 𝑅0√𝑒−𝑎1𝑡 − 𝑅0

  , 

for some normalizing factor 𝐶(𝑡) that depends on 𝑡.  𝜔0, 𝜔1  are determined by 

solving the equations 

(1 +
𝐼1 (

𝜔0

2 )

𝐼0 (
𝜔0

2 )
) = 2𝑅0

̅̅ ̅ , (1 +
𝐼1 (

𝜔1

2 )

𝐼0 (
𝜔1
2 )

) = 2𝑅0
̅̅ ̅𝑒−𝜆𝑡  , 

with the understanding that the mean 𝐸(𝑒𝑎0+𝑎1𝑡) ≜ 𝑒𝐸(𝑎0)+ 𝐸(𝑎1)𝑡 ≜ 𝑅0
̅̅ ̅𝑒−𝜆𝑡 is 

valid (as first-order Taylor approximation). Note that 𝜔1 = 𝜔1(𝑡) is also a 

function of 𝑡 (for fixed 𝜆) . Equivalently, the change of variables 𝑅0 = 𝑒𝑎0  gives 

the max entropy prior as 

𝝅(𝑎0, 𝑎1) = 𝝅(𝑎0, 𝑎1, 𝑡) = 𝐶(𝑡)
𝑒(𝜔0𝑒𝑎0)𝑒𝑎0

√𝑒𝑎0(1 − 𝑒𝑎0)
 

𝑒(𝜔1𝑒𝑎0+𝑎1𝑡)𝑡𝑒𝑎0+𝑎1𝑡

√𝑒𝑎0+𝑎1𝑡(1 − 𝑒𝑎0+𝑎1𝑡)
 

= 𝐶(𝑡)
𝑒(𝜔0𝑒𝑎0+𝜔1𝑒𝑎0+𝑎1𝑡)𝑡𝑒𝑎0

√1 − 𝑒𝑎0√𝑒−𝑎1𝑡 − 𝑒𝑎0
  . 

To see this, we just set  𝑇1 = 0,  𝑇2 = 𝑡, 𝜔1 = 𝜔0, 𝜔2 = 𝜔1 in equation (3). 

The posterior density is given by 

𝜌(𝑎0, 𝑎1|data, t) ∝ 𝝅(𝑎0, 𝑎1, 𝑡)𝐿(data |𝑎0, 𝑎1), 

and the corresponding Bayesian mean reliability computed from the above 

posterior distribution is 
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𝑅(𝑡)̅̅ ̅̅ ̅̅ = E(𝑅(𝑡)) = ∫ ∫ 𝑒𝑎0+𝑎1𝑡 

0

−∞

0

−∞

𝜌(𝑎0, 𝑎1, 𝑡|data) 𝑑𝑎0𝑑𝑎1. 

Now given the same prior information  𝑅0
̅̅ ̅ at  𝑡 = 0 , and the failure rate 𝜆, let us 

assume that the initial reliability 𝑅0 is independent of the failure rate 𝑎1. We can 

then apply the independent decrement method and write 

𝑅(𝑡) = 𝑒𝑎0+𝑎1𝑡 = 𝑅0𝑒𝑎1𝑡 = 𝑅0∆(𝑡), 

and deduce that the maximum entropy prior is 

 𝝅(𝑅0, 𝑎1) = 𝐶(𝑡)𝜌̃(𝑅0)𝝅(𝑎1) = 𝐶(𝑡)𝑒𝜔0𝑅0𝑅0
−

1
2(1 − 𝑅0)−

1
2

𝑒(𝜔1𝑒𝑎1𝑡)𝑡𝑒𝑎1𝑡

√𝑒𝑎1𝑡(1 − 𝑒𝑎1𝑡)
 , 

for some normalizing factor 𝐶(𝑡) that depends on 𝑡.  𝜔0, 𝜔1  are determined by 

solving the equations 

(1 +
𝐼1 (

𝜔0

2 )

𝐼0 (
𝜔0

2 )
) = 2𝑅0

̅̅ ̅ , (1 +
𝐼1 (

𝜔1

2 )

𝐼0 (
𝜔1
2 )

) = 2𝑒−𝜆𝑡  , 

where we make the usual Taylor approximation 𝐸(𝑒𝑎1𝑡) ≜ 𝑒𝐸(𝑎1)𝑡 = 𝑒−𝜆𝑡 . 

Equivalently, the change of variables 𝑅0 = 𝑒𝑎0  gives the max entropy prior as 

𝝅(𝑎0, 𝑎1) = 𝐶(𝑡)
𝑒(𝜔0𝑒𝑎0)𝑒𝑎0

√𝑒𝑎0(1 − 𝑒𝑎0)
 

𝑒(𝜔1𝑒𝑎1𝑡)𝑡𝑒𝑎1𝑡

√𝑒𝑎1𝑡(1 − 𝑒𝑎1𝑡)
 .  

To see this, we just set  𝑇1 = 0,  𝑇2 = 𝑡, 𝜔1 = 𝜔0, 𝜔2 = 𝜔1 in equation (4). 

Notice that  𝝅(𝑎0, 𝑎1) =  𝝅(𝑎0)𝝅( 𝑎1) , with 

𝝅 (𝑎0) = 𝐶0

𝑒(𝜔0𝑒𝑎0)𝑒𝑎0

√𝑒𝑎0(1 − 𝑒𝑎0)
 , 𝝅( 𝑎1) = 𝐶1(𝑡)

𝑒(𝜔1𝑒𝑎1𝑡)𝑡𝑒𝑎1𝑡

√𝑒𝑎1𝑡(1 − 𝑒𝑎1𝑡)
 ,  

for some normalizing factors 𝐶0 and 𝐶1(𝑡). As noted previously,  𝜔1 = 𝜔1(𝑡) is a 

function of 𝑡 (for fixed 𝜆).  Let us write 𝝅(𝑎1) = 𝝅(𝑎1, 𝑡). The posterior density 

satisfies 
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𝜌(𝑎0, 𝑎1, 𝑡|data) = 𝜌(𝑎0| data, 𝑡 = 0)𝜌(𝑎1|data, t  >0) 

∝  𝝅(𝑎0)𝐿(data, 𝑡 = 0| 𝑎0) 𝝅(𝑎1, 𝑡)𝐿(data, 𝑡 > 0| 𝑎1). 

In this case, the corresponding Bayesian mean estimates has a simple form given 

by 

𝑅(𝑡)̅̅ ̅̅ ̅̅ = E(𝑅(𝑡)) = ∫ ∫ 𝑒𝑎0+𝑎1𝑡 

0

−∞

0

−∞

𝜌(𝑎0, 𝑎1, 𝑡|data) 𝑑𝑎0𝑑𝑎1 

= ∫ 𝑒𝑎0𝜌(𝑎0| data, 𝑡 = 0)
0

−∞

𝑑𝑎0 ∫ 𝑒𝑎1𝑡𝜌(𝑎1| data, 𝑡 > 0)𝑑𝑎1

0

−∞

 

= E(𝑅0)E(𝑒𝑎1𝑡). 

Comparing the two approaches, we observe that for the independent decrement 

method, 0 ≤ ∆(𝑡) ≤ 1, so that 𝑅(𝑡2) ≤ 𝑅1(𝑡1)  whenever  𝑡2 ≥ 𝑡1. This method 

therefore guarantees that the mean reliability 𝑅(𝑡) is monotonically decreasing 

with time, which is not necessarily the case with the independent endpoints 

method. This makes the latter a more attractive choice for reliability estimation. 

 

Perfect intercept case 

We would like to mention that in some cases, it is useful to consider the special 

model 

𝑅(𝑡) = 𝑒𝑎1𝑡 , 

where the intercept term 𝑎0 is ignored (e.g. system is essentially assumed to be 

perfect at 𝑡 = 0).  With known failure rate 𝜆 as point estimate, the max entropy 

prior for 𝑎1 is just 

𝝅( 𝑎1) = 𝝅(𝑎1, 𝑡) = 𝐶(𝑡)
𝑒(𝜔1𝑒𝑎1𝑡)𝑡𝑒𝑎1𝑡

√𝑒𝑎1𝑡(1 − 𝑒𝑎1𝑡)
  , 

with 𝜔1 determined by 
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(1 +
𝐼1 (

𝜔1

2 )

𝐼0 (
𝜔1
2 )

) = 2𝑒−𝜆𝑡 . 

 

The posterior density is given by 

𝜌(𝑎1, 𝑡|data) ∝   𝝅(𝑎1, 𝑡)𝐿(data| 𝑎1) , 

with mean reliability  

𝑅(𝑡)̅̅ ̅̅ ̅̅ = E(𝑅(𝑡)) = ∫ 𝑒𝑎1𝑡 𝜌(𝑎1, 𝑡|data) 𝑑𝑎1

0

−∞

. 

Concluding Remarks 

In the absence of additional information regarding point estimates of reliability 

numbers, we illustrate a natural method for obtaining a reasonable probability 

distribution by employing the principle of maximum entropy (MEP) to the point 

estimates. MEP-based distributions characterize the least informative 

distributions with the available point estimates as constraints. These distributions 

are then applied as priors to a Bayesian system reliability model to obtain the 

posterior reliability distribution, which can be used to assess missile reliability and 

answer other important reliability related questions such as missile availability, 

maintenance cycle, logistic policy, firing doctrine, etc.  
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